Neurofeedback using ultra-high field 7 Tesla MRI with longitudinal behavioural and ecological sampling.

Saampras Ganesan, M. Eng. Presenter
The University of Melbourne
Biomedical Engineering
Melbourne, Victoria 
Australia
 
Wednesday, Jun 26: 9:00 AM - 10:15 AM
Symposium 
COEX 
Room: Hall D 2 
There is growing evidence that real-time fMRI neurofeedback can empower neurotypical and psychiatric populations to quickly learn non-invasive self-regulation of brain function and subsequently improve well-being or mitigate dysfunction. Advancements in ultra-high field 7 Tesla MRI have facilitated substantially greater neuroanatomical precision with sub-second temporal resolution which can potentially further the efficacy of fMRI neurofeedback. However, very few studies have attempted real-time 7T fMRI neurofeedback, as achieving meaningful real-time processing of such high-dimensional data at sub-second sampling rates can be technically challenging. Furthermore, neurofeedback studies often do not incorporate adequate follow-up assessments that can disambiguate the immediate and longer-term translational impact of brief and precise neurofeedback training. Therefore, to investigate the translational impact of neuroanatomically precise high-resolution fMRI neurofeedback, we first established real-time neurofeedback capacity at our 7 Tesla MRI centre (with TR=800 ms; isometric fMRI voxel size = 1.6 mm). Subsequently, we performed the first comprehensive placebo-controlled 7 Tesla fMRI neurofeedback trial with intensive longitudinal behavioural sampling. We aimed to teach neurotypical beginners to meditate correctly and efficiently using precise real-time neurofeedback guidance. Following the neurofeedback-augmented meditation training, we assessed its immediate as well as longer-term (e.g., 1-week, 3-6 months) translational impact on memory, attention, meditation performance, anxiety and distress. Additionally, we performed ecological sampling of state mindfulness associated with daily at-home meditation practice for a week following the neurofeedback training. We found that precise neurofeedback-meditation training produces greater deactivation in the posterior cingulate cortex, compared to active placebo (non-contingent sham neurofeedback). Furthermore, we found that this training can produce greater improvements in meditation practice and associated mental health benefits compared to the active control group. I further discuss how neurofeedback learning transfers outside the MRI scanner, and the far-reaching translational capacity of such comprehensive neurofeedback study designs in enabling multimodal comparisons and inferences (e.g., comparison with same translational outcomes from an equivalent but independent EEG neurofeedback experiment).